6 research outputs found

    Prenatal Diagnosis of Bilateral Ectrodactyly and Radial Agenesis Associated with Trisomy 10 Mosaicism

    Get PDF
    Ectrodactyly or split hand and foot malformations (SHFMs) are rare malformations of the limbs, characterized by median cles of the hands and feet, syndactyly, and aplasia and/or hypoplasia of the phalanges. ey represent a clinically and genetically heterogeneous disorder, with both sporadic and familial cases. Most of the genomic rearrangements identi�ed to date in some forms of SHFM are autosomal dominant traits, involving various chromosome regions. Bilateral radial ray defects comprise also a large heterogenous group of disorders, including trisomy 18, Fanconi anemia, and thrombocytopenia-absent-radius syndrome, not commonly associated with ectrodactyly. e present paper describes a case of ectrodactyly associated with bilateral radial ray defects, diagnosed in the �rst trimester of pregnancy, in a fetus affected by trisomy 10. Only four cases of sporadic and isolated ectrodactyly, diagnosed by ultrasonography between 14 and 22 weeks' gestation, have been reported. To our knowledge, the present case is the �rst report of mosaic trisomy 10 associated with SHFM and radial aplasia. Trisomy 10 is a rare lethal chromosomal abnormality, most frequently found in abortion products. Only six liveborn mosaic trisomy 10 infants, with severe malformations, dead in early infancy, have been reported. A severe clinical syndrome can be de�ned, comprising ear abnormalities, cle lip/palate, malformations of eyes, heart, and kidneys, and deformity of hands and feet and most oen associated with death neonatally or in early infancy

    Prenatal Diagnosis of Bilateral Ectrodactyly and Radial Agenesis Associated with Trisomy 10 Mosaicism

    Get PDF
    Ectrodactyly or split hand and foot malformations (SHFMs) are rare malformations of the limbs, characterized by median clefts of the hands and feet, syndactyly, and aplasia and/or hypoplasia of the phalanges. They represent a clinically and genetically heterogeneous disorder, with both sporadic and familial cases. Most of the genomic rearrangements identified to date in some forms of SHFM are autosomal dominant traits, involving various chromosome regions. Bilateral radial ray defects comprise also a large heterogenous group of disorders, including trisomy 18, Fanconi anemia, and thrombocytopenia-absent-radius syndrome, not commonly associated with ectrodactyly. The present paper describes a case of ectrodactyly associated with bilateral radial ray defects, diagnosed in the first trimester of pregnancy, in a fetus affected by trisomy 10. Only four cases of sporadic and isolated ectrodactyly, diagnosed by ultrasonography between 14 and 22 weeks’ gestation, have been reported. To our knowledge, the present case is the first report of mosaic trisomy 10 associated with SHFM and radial aplasia. Trisomy 10 is a rare lethal chromosomal abnormality, most frequently found in abortion products. Only six liveborn mosaic trisomy 10 infants, with severe malformations, dead in early infancy, have been reported. A severe clinical syndrome can be defined, comprising ear abnormalities, cleft lip/palate, malformations of eyes, heart, and kidneys, and deformity of hands and feet and most often associated with death neonatally or in early infancy

    How chromosomal deletions can unmask recessive mutations? Deletions in 10q11.2 associated with CHAT or SLC18A3 mutations lead to congenital myasthenic syndrome

    No full text
    International audienceA congenital myasthenia was suspected in two unrelated children with very similar phenotypes including several episodes of severe dyspnea. Both children had a 10q11.2 deletion revealed by Single Nucleotide Polymorphisms array or by Next Generation Sequencing analysis. The deletion was inherited from the healthy mother in the first case. These deletions unmasked a recessive mutation at the same locus in both cases, but in two different genes: CHAT and SLC18A3

    Molecular cytogenetic analysis of a duplication Xp in a female with an abnormal phenotype and random X inactivation

    No full text
    International audienceWe describe a female infant with severe abnormal phenotype with a de novo partial duplication of the short arm of the X chromosome. Chromosome painting confirmed the origin of this X duplication. Molecular cytogenetic analysis with fluorescence in situ hybridization (FISH) was performed with YAC probes, further delineating the breakpoints. The karyotype was 46, X dup(X)(p11-p21.2). Cytogenetic replication studies showed that the normal and duplicated X chromosomes were randomly inactivated in lymphocytes. In most females with structurally abnormal X chromosomes, the abnormal chromosome is inactivated and they are phenotypically apparently normal relatives of phenotypically abnormal males having dupX. Therefore, in this case, there is functional disomy of Xp11-p21.2 in the cells with an active dup(X), most likely resulting in abnormal clinical findings in the patient

    A 14q distal chromoanagenesis elucidated by whole genome sequencing

    No full text
    International audienceChromoanagenesis represents an extreme form of genomic rearrangements involving multiple breaks occurring on a single or multiple chromosomes. It has been recently described in both acquired and rare constitutional genetic disorders. Constitutional chromoanagenesis events could lead to abnormal phenotypes including developmental delay and congenital anomalies, and have also been implicated in some specific syndromic disorders. We report the case of a girl presenting with growth retardation, hypotonia, microcephaly, dysmorphic features, coloboma, and hypoplastic corpus callosum. Karyotype showed a de novo structurally abnormal chromosome 14q31qter region. Molecular characterization using SNP-array revealed a complex unbalanced rearrangement in 14q31.1-q32.2, on the paternal chromosome 14, including thirteen interstitial deletions ranging from 33 kb to 1.56 Mb in size, with a total of 4.1 Mb in size, thus suggesting that a single event like chromoanagenesis occurred. To our knowledge, this is one of the first case of 14q distal deletion due to a germline chromoanagenesis. Genome sequencing allowed the characterization of 50 breakpoints, leading to interruption of 10 genes including YY1 which fit with the patient's phenotype. This precise genotyping of breaking junction allowed better definition of genotype-phenotype correlations

    Neurodevelopmental phenotype in 36 new patients with 8p inverted duplication–deletion: Genotype–phenotype correlation for anomalies of the corpus callosum

    No full text
    International audienceInverted duplication deletion 8p [invdupdel(8p)] is a complex and rare chromosomal rearrangement that combines a distal deletion and an inverted interstitial duplication of the short arm of chromosome 8. Carrier patients usually have developmental delay and intellectual disability (ID), associated with various cerebral and extra-cerebral malformations. Invdupdel(8p) is the most common recurrent chromosomal rearrangement in ID patients with anomalies of the corpus callosum (AnCC). Only a minority of invdupdel(8p) cases reported in the literature to date had both brain cerebral imaging and chromosomal microarray (CMA) with precise breakpoints of the rearrangements, making genotype-phenotype correlation studies for AnCC difficult. In this study, we report the clinical, radiological, and molecular data from 36 new invdupdel(8p) cases including three fetuses and five individuals from the same family, with breakpoints characterized by CMA. Among those, 97% (n = 32/33) of patients presented with mild to severe developmental delay/ID and 34% had seizures with mean age of onset of 3.9 years (2 months-9 years). Moreover, out of the 24 patients with brain MRI and 3 fetuses with neuropathology analysis, 63% (n = 17/27) had AnCC. We review additional data from 99 previously published patients with invdupdel(8p) and compare data of 17 patients from the literature with both CMA analysis and brain imaging to refine genotype-phenotype correlations for AnCC. This led us to refine a region of 5.1 Mb common to duplications of patients with AnCC and discuss potential candidate genes within this region
    corecore